Abridged Version for Release

Characterization of Subcutaneous Pelvic Adipose Tissue for Enhancement of Human Surrogate Models Study Overview and Preliminary Data

Austin Moore, Jazmine Aira, Sam Efobi, Ryan Barnard, Leon Lenchik, Fang Chi Hsu, Ashley Weaver, F. Scott Gayzik

May 26th, 2021

Center for Injury Biomechanics

School of Biomedical Engineering and Sciences

Project Team

- **Biomechanics**
 - Scott Gayzik, PhD
 - Ashley Weaver, PhD
 - Jazmine Aira, MS
 - Austin Moore, MD/PhD Student
- Radiology
 - Leon Lenchik, MD
- Biostatistics
 - Fang Chi Hsu, PhD
- Data analysis/support – Ryan Barnard, MS
- Undergraduate student support – Sam Efobi

Scott Gayzik

Ashley Weaver

Leon Lenchik

Fang Chi Hsu

Ryan Barnard

Jazmine Aira

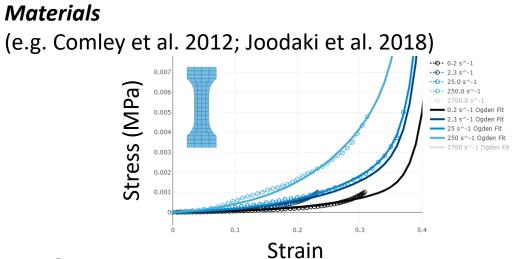
Austin Moore

Sam Efobi

Background & Study Motivation

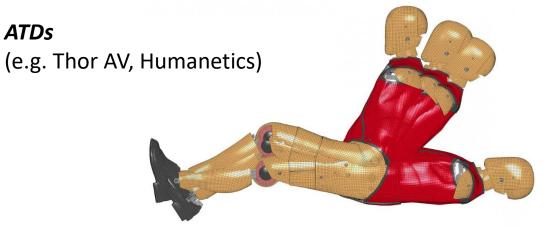
Occupant submarining occurs when the lap belt slides over the ASIS

 One of the main causes of severe (AIS 3+) abdominal injury in frontal crash [Lamielle, 2006]


 Directly related to pelvis kinematics relative to lap belt [Luet, 2012]

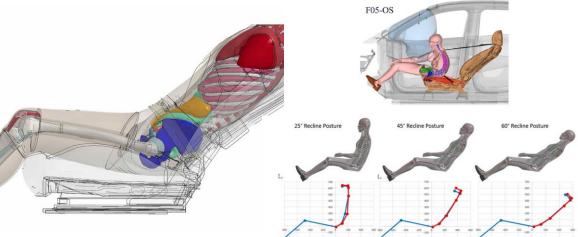
- HAVs may increase incidence
- Headline grabbing but not (yet) common [Reed, 2020]

Technical Progress in the Literature: Human Surrogate Models

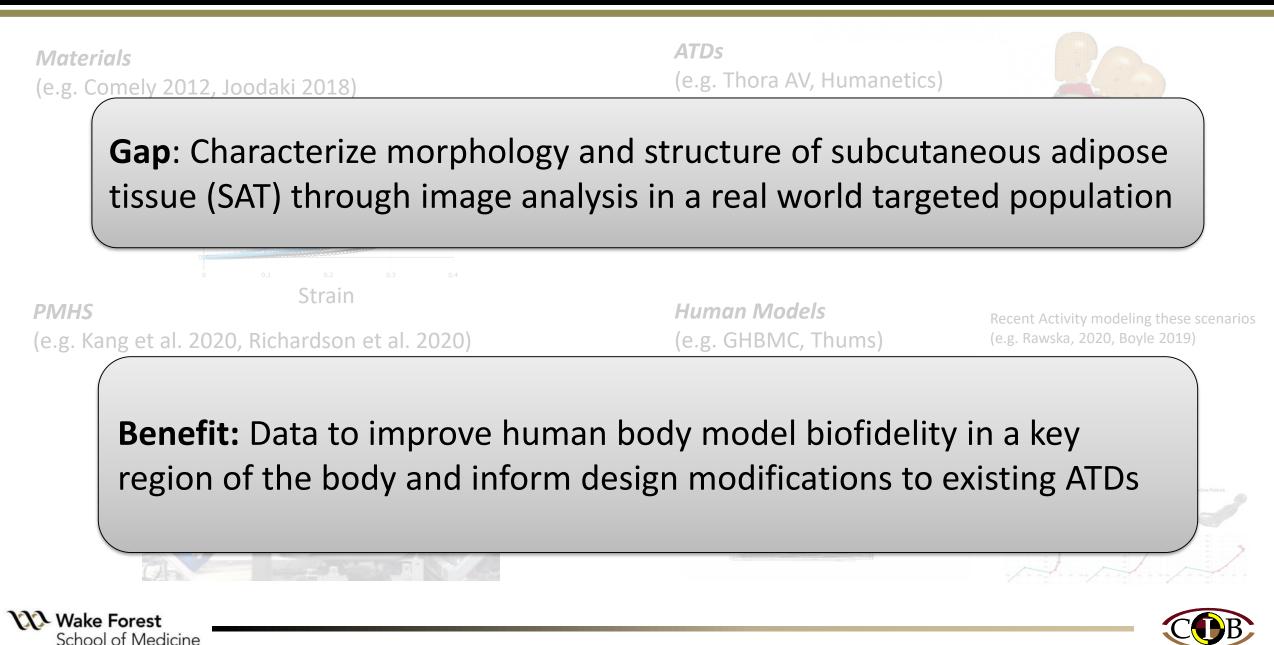


PMHS

(e.g. Kang et al. 2020; Richardson et al. 2020)



https://humanetics.humaneticsgroup.com/perspectives/autonomous-vehicle-occupant-safety

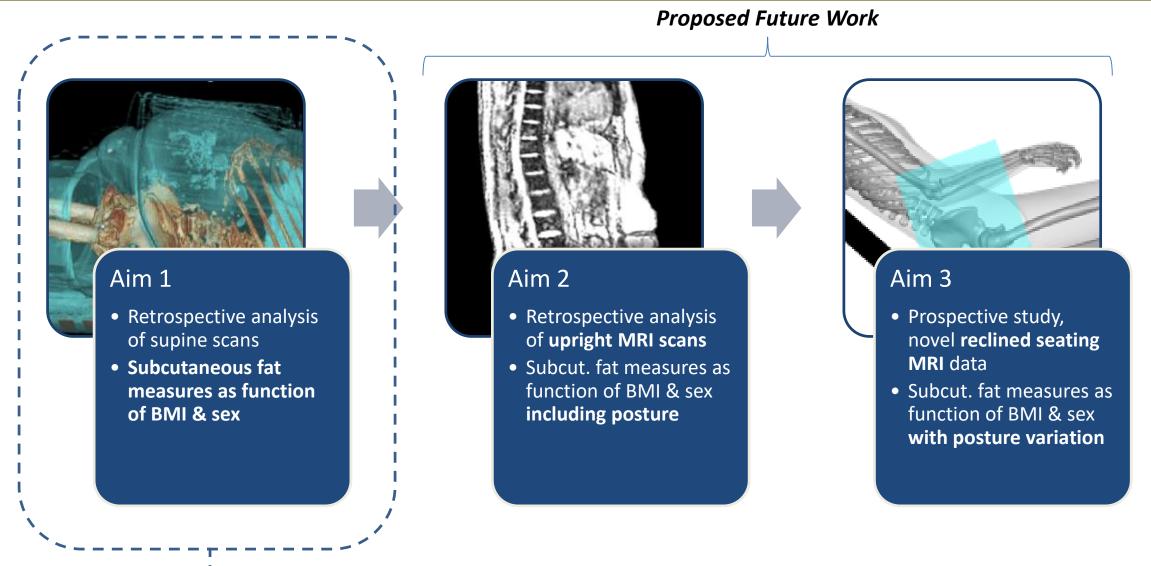

Human Models (e.g. GHBMC, Thums)

Recent Activity modeling these scenarios (e.g. Rawska, 2020, Boyle 2019)

Technical Progress in the Literature: Human Surrogate Models

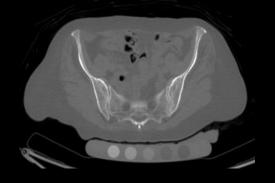
Project Goals

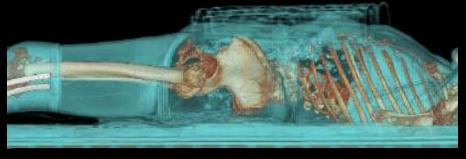
• Research Objective: A combination retrospective and prospective imaging study to characterize subcutaneous adipose tissue (SAT, e.g. belly fat) cross-sectional area, depth and structure in the vicinity of the pelvis, with a focus on posture, body mass index (BMI) and sex.



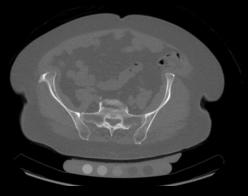
Review of Aims

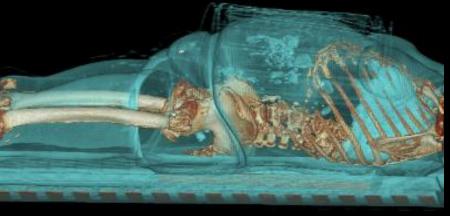
Wake Forest


School of Medicine



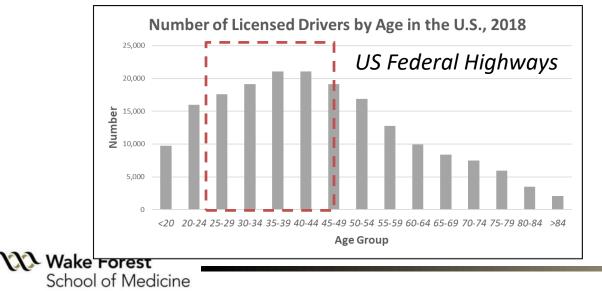
---- Aim 1 in progress, current phase Jan – Sept 2021




• Extract measures of morphology and characteristics of SAT from existing abdominopelvic CT and MRI scans.

Low **BMI**

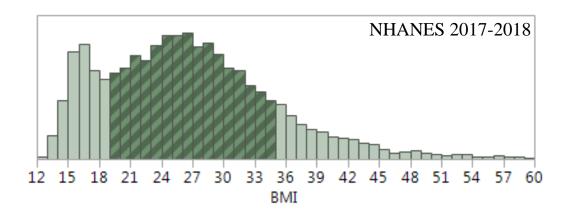
High BMI



Age and Image Data Considerations for Aim 1

Age Considerations

- SAT changes with age, limit analysis to younger population (Ponti et al., 2020)
- Target age range is 25-45 years old
 - Based on population of Phase II data (largely from younger individuals) and covers a large portion of driving pop.


Image Type

- CT or MRI
- Strengths and weakness of both
 - MRI is highly dependent on pulse sequence
 - MRI data will be used in Aims 2 and 3
 - CT data is less variable, more common

Aim 1 Sample Size & Target Population

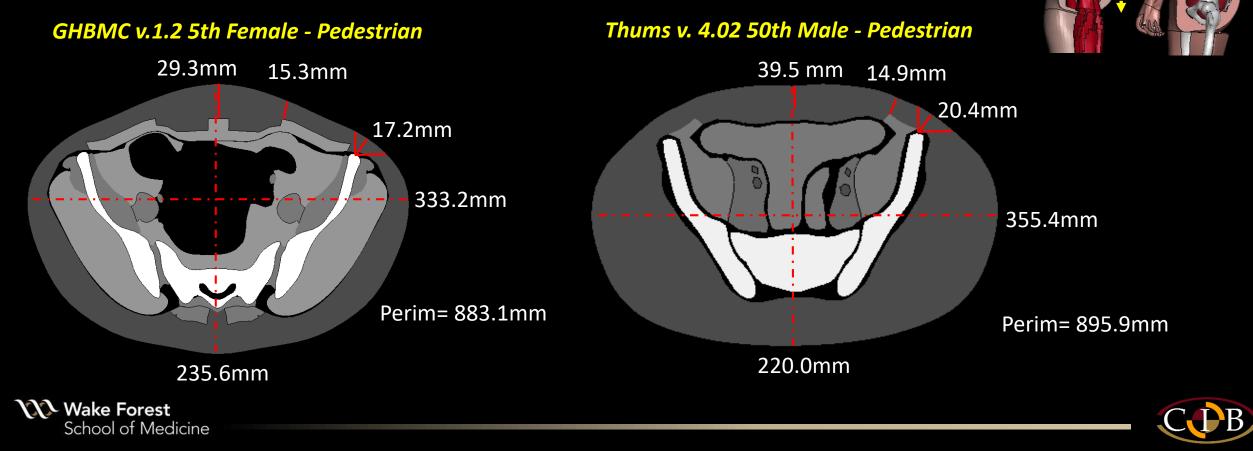
- Abdominopelvic medical images from
 - ~84 human subjects are being analyzed
 - Goal: ~14 males, ~14 females in each BMI category
- Collect data from M & F subjects across normal, overweight, and obese BMI ranges

Wake Forest

School of Medicine

BMI Category	N (Male)	N (Female)
Normal (19-24.9)	14	14
Overweight (25-29.9)	14	14
Obese (30-35)	14	14

Wake Forest School of Medicine


Output Measure	Abbrev.	Description
Subcutaneous adipose		
tissue cross-sectional	CSA _{SAT}	Taken at an axial slice through left and right ASIS
area (cm ²)		
Subcutaneous adipose		Measured to bony pelvic prominences (e.g. ASIS), and regional depth
tissue depth measures	D _{SAT,1,2,N}	measures taken at various locations across the surface of the adipose
(mm)	- / / /	tissue anterior to the pelvis.
Fat quality	Q _{SAT}	Measured by Hounsfield Unit attenuation on CT
Abdominal seat belt sign location distance to ASIS	SBL	If visible on CT fat rendering, measure axial distance between slice containing ASIS and slice containing seatbelt sign. There are at least 50 CIREN occupants in the CIB image repository with abdominal seat belt sign, including occupants with normal, overweight, and obese BMI.

A SIS

SAT Data is Built into Human Models

- SAT data is built into models but how accurate is it?
- Morphological population data in this region can inform models (& ATDs?) in a critical region
- Data from models in standing posture below (only supine scans so far...)
- Future use of study data...to verify current, or morphed obese models, or changes by posture. The medical image data can potentially be used as targets.

DATA COLLECTION METHODS

Scan Selection: Eligibility Criteria

- Dataset: CIREN (n ~870) + ~1000 retrospective scans from prior biomechanics studies @WFU
- Age 25 yr 45 yr
- BMI 19 35
- No pelvic or lumbar vertebral fracture
 - Verified in injury coding and visual scan inspection
- Left and right ASIS visible in scan
- At least one flank in field-of-view (FOV) at axial level of ASIS

Exemplar Measurement: ASIS depths

Distance from ASIS to outer skin surface, in 3 directions:

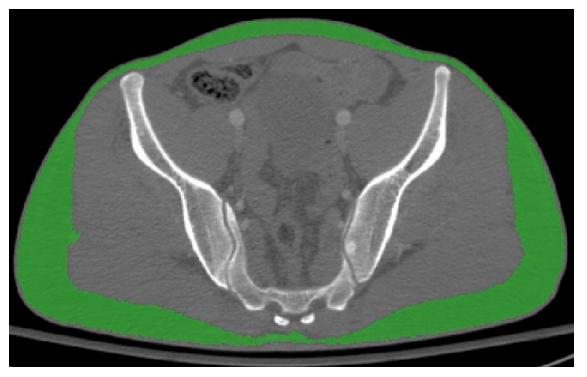
- Along path from anterior aspect of sacroiliac (SI) joint to ASIS
- Anterior-posterior
- Lateral

Summary of Linear and Angular Measures

6.71mm

Depth, linear, angular measures taken by subject:

- R&L ASIS, linea alba, rectus abdominis depths
- Lumbar lordosis angle
- Perimeter
- A-P distance
- L-R distance

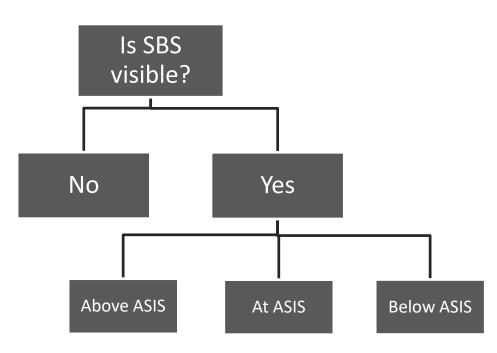

Image Analysis Protocol

- Semi-automatic threshold (-150HU to -40HU)
- Manual user edit
 - Remove voxels at skin, viscera, table
 - Fill holes in subcutaneous fat
- Document mask volume, number of pixels, average HU value
- Calculate area

Wake Forest

School of Medicine

 $A = \frac{mask \ volume}{slice \ thickness}$


Seatbelt Sign: Protocol

- Visualize 3d fat rendering
- Determine if SBS is visible
- Measure distance from plane containing ASIS to middle of SBS in z-direction at midline
 - Analyze in bins, relative to ASIS location:
 - Above ASIS
 - at ASIS

Wake Forest

School of Medicine

Below ASIS

Preliminary Statistical Analysis (N = 50)

 Linear regression models to evaluate the associations between outcome measures (e.g., SAT and L-R diameter) and independent variables (e.g., BMI, sex and age).

• Sex by BMI Interaction was also tested.

PRELIMINARY RESULTS AND STATUS

Scan Selection Metadata: Current Snapshot

- 58 eligible subjects identified (68%)
- 50 subjects analyzed (58%)
 Results are subject to change!
- 19 positive seatbelt sign (SBS)
- Goal: 85 subjects

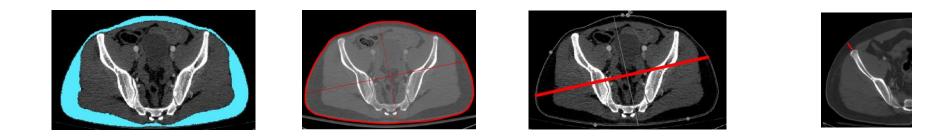
Wake Forest

School of Medicine

 Goal: ~14 males, ~14 females in each BMI category

BMI Category	N (Male)	N (Female)
Normal (19-24.99)	14	11
Overweight (25-29.99)	14	7
Obese (30-35)	8	4

BMI Category	Age (Std. Dev.) (Male)	Age (Std. Dev.) (Female)
Normal	32.4 (5.7)	32.6 (5.7)
Overweight	32.9 (5.9)	27.6 (2.9)
Obese	35.8 (6.6)	32.0 (4.3)



DISCUSSION AND CONCLUDING REMARKS

Table of Preliminary Summary Statistics

Independent Variables	SAT Area	Perimeter	Lmax (L-R diameter)	ASIS Depth (Along S-I)
R^2	> 0.6	> 0.7	> 0.6	> 0.6
BMI Prelimina	+	+	+	+
BMI Preliminary Analy	+	+	+	-
Age	- -	+	-	+
Left-to-Right	N/A	N/A	N/A	-

Significance level is alpha = 0.05, Left-to-Right only evaluated on ASIS Depth

Preliminary Statistics Summary

- Several preliminary models were assessed
 Preliminary (n = 50, 58% of data)
- BMI appears to be highly associated with the outcome measures
- Sex appears to be associated with the outcome measures
 Most measures, female values were greater than male at same BMI
- Age significance appears to vary by measure

 Narrow age range of subjects
- Interactions generally were not significant, e.g. BMI impacts outcomes measures same for male and female

Long Term Study Goals

Wake Forest

School of Medicine

- 1. Provide morphological data on subcutaneous adipose tissue in the vicinity of the pelvis from a large sample of supine images.
- 2. Provide matched pair analysis of supine and upright imaging data to assess if differences in SAT morphology are noted between these endpoints.
- 3. Provide new data of SAT and structure in the vicinity of the pelvis in reclined postures.
- Near Term • Predictive models for fat depth and cross-sectional area based on seated posture
 - New insights from a large quantity of supine scans that are readily available, including sex and age differences
 - May inform and/or update human body modes and potentially ATDs

Wake Forest

School of Medicine

• Questions & Comments?

RECADS Research Consortium for Crashworthiness in Automated Driving Systems

- F. Scott Gayzik
- Associate Professor, Biomedical Engineering
- Wake Forest University School of Medicine
- 336-716-6643
- sgayzik@wakehealth.edu

References

- Luet, C., et al., *Kinematics and dynamics of the pelvis in the process of submarining using PMHS sled tests*. 2012, SAE Technical Paper.
- Lamielle, S., et al. Abdominal injury patterns in real frontal crashes: influence of crash conditions, occupant seat and restraint systems. in Annual Proceedings/Association for the Advancement of Automotive Medicine. 2006. Association for the Advancement of Automotive Medicine.
- Reed, Matthew P., et al. "Prevalence of non-nominal seat positions and postures among front-seat passengers." *Traffic injury prevention* (2020): 1-6.
- https://humanetics.humaneticsgroup.com/perspectives/autonomous-vehicle-occupant-safety
- Joodaki H, Panzer MB. Skin mechanical properties and modeling: A review. in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2018. 232(4): p. 323-343.
- Comley, K. and N. Fleck, The compressive response of porcine adipose tissue from low to high strain rate. International Journal of Impact Engineering, 2012. 46: p. 1-10.
- https://humanetics.humaneticsgroup.com/perspectives/autonomous-vehicle-occupant-safety
- Kang, Y. S., Stammen, J., Ramachandra, R., Agnew, A. M., Hagedorn, A., Thomas, C., ... & Bolte IV, J. H. (2020). Biomechanical responses and injury assessment of post mortem human subjects in various rear-facing seating configurations. Stapp car crash journal, 64, 155-212.
- Rawska, Katarzyna, et al. "Submarining sensitivity across varied seat configurations in autonomous driving system environment." Traffic injury prevention (2020): 1-6.
- Richardson, Rachel, et al. "Thoracolumbar spine kinematics and injuries in frontal impacts with reclined occupants." *Traffic injury prevention* (2020): 1-6.
- Boyle, Kyle J., et al. "A human modelling study on occupant kinematics in highly reclined seats during frontal crashes." *Proceedings of the 2019 IRCOBI Conference. Florence, Italy.* 2019.
- Ponti F, Santoro A, Mercatelli D, et al. Aging and Imaging Assessment of Body Composition: From Fat to Facts. *Front Endocrinol (Lausanne)*. 2020;10:861. Published 2020 Jan 14. doi:10.3389/fendo.2019.00861
- <u>https://www.fhwa.dot.gov/policyinformation/statistics/2018/</u>
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) 2017-2018 Examination Data. Body Measures: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018
 2018/BMX_J.XPT 2018.

