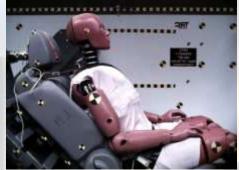
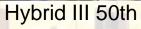


Biofidelity Assessment of THOR-50M and H3 50th ATDs in Rear-Facing Rigid Seat Tests

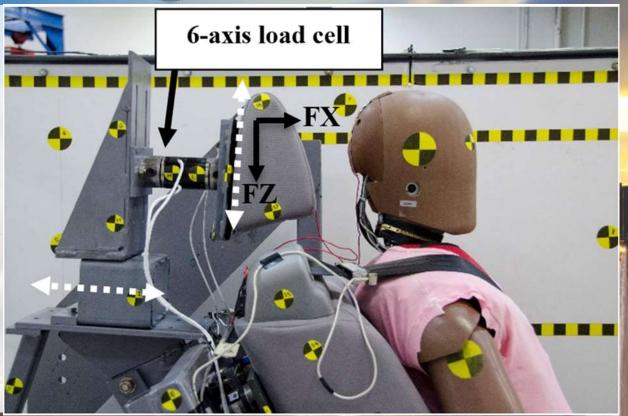

Alena Hagedorn


Transportation Research Center Inc. RCCADS Presentation May 26, 2021

DISCLAIMER: The opinions, findings, and conclusions expressed in this presentation are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Overview & Goals


- Evaluate and compare ATD responses to PMHS
 - Biofidelity
 - Injury assessment
 - Effect of seat recline angle
 - Match PMHS as closely as possible
 - Instrumentation
 - Positioning
- Identify areas in need of improvement
 - Improve biofidelity
 - Flexible positioning in various recline angles
 - Added instrumentation in areas where injuries occur
 - Protect sensors from damage


Methods: Sled Buck Design

Methods: Sled Buck Design

- Adjustable HR
 - forward
 - aft
 - up
 - down
- 6-axis load cell behind HR
- Accels on HR plate

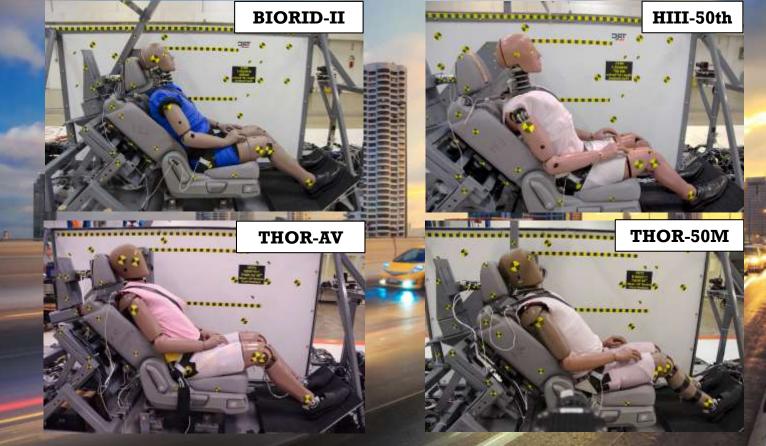
Methods: Sled Buck Design

- Adjustable seatback recline
 - 25° and 45° used in these tests
- Three load plates behind seatback:
 - top, mid, bottom
 - 6-axis load cells on left and right sides of each plate
 - accel on each plate



Methods: Seats Tested

 2018 Honda Odyssey second row ABTS(all belts to seat)



• 2018 Honda Accord (manual seat)

Methods: ATDs Tested

Methods: Test Severity

- Pulse same as PMHS
 - "high" speed – NCAP 56 kph, 35.9 – 53.7 G
- "low" speed
 24 kph, ~10.3 G

Occupant		25° Recline	45° Recline	25° Recline	45° Recline
		Odyssey Seat Tests		Accord Seat Tests	
Ч	THOR-50M	3	3	3	2*
56 kph	Hybrid III 50 th	3	3	3	3
56	THOR-AV	1	1	1	1
	THOR-50M	3	3	2	2
kph	Hybrid III 50 th	3	3	1	0
24 k	THOR-AV	0	0	0	0
	BIORID-II	2	2	0	0

NHTSA

HTSA

<mark>⊕ ∱</mark> ∰ ☆

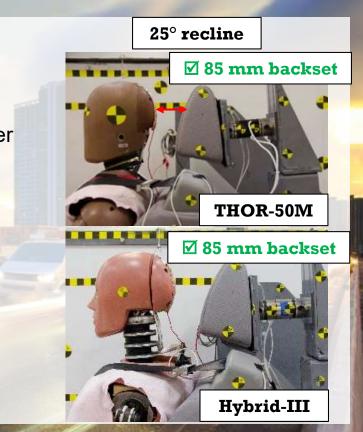
Occupant		25° Recline	45° Recline	25° Recline	45° Recline
		Odyssey Seat Tests		Accord Seat Tests	
h	THOR-50M	3	3	3	2*
56 kph	Hybrid III 50 th	3	3	3	3
56	THOR-AV	1	1	1	1
	THOR-50M	3	3	2	2
kph	Hybrid III 50 th	3	3	1	0
241	THOR-AV	0	0	0	0

⊕ #

	Occupant	25° Recline	45° Recline	25° Recline	45° Recline	
	Occupant	Odyssey Seat Tests		Accord Seat Tests		
Ч	THOR-50M	3	3	3	2*	
56 kph	Hybrid III 50 th	3	3	3	3	
56						
	THOR-50M	3	3	2	2	
24 kph	Hybrid III 50 th	3	3	1	0	
24 I						
NHTSA * Head restraint & neck failures						

Θ

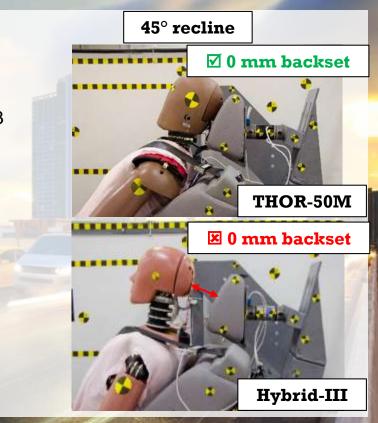
Æ.


Occupant		25° Recline	45° Recline	25° Recline	45° Recline	
	Occupant	Odyssey Seat Tests		Accord Seat Tests		
Ч	THOR-50M	3	3	3	2*	
56 kph	Hybrid III 50 th	3	3	3	3	
56						
NH	rsa -		1978	* Hoad restrain	t & nock failure	

	Occupant	25° Recline	45° Recline
	Occupant	Odyssey	Seat Tests
ц	THOR-50M	3	3
56 kph	Hybrid III 50 th	3	3
56			
NH	TSA	State of the local division of the local div	

Methods: ATD Positioning

- Match PMHS as closely as possible
- Used UMTRI seating technique
 <u>https://deepblue.lib.umich.edu/handle/2027.42/146263</u>

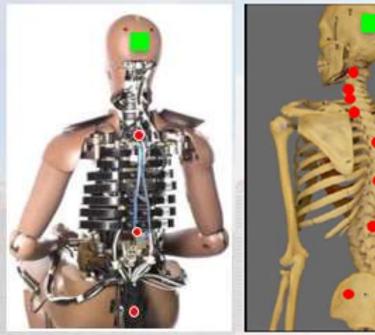

 Reed, M. and Ebert, S., "Effects of Recline on Passenger Posture and Belt Fit", UMTRI-2018-2, September 2018.
 - At 25° recline:
 - Backset achieved in both ATDs

Methods: ATD Positioning

- At 45° recline:
 - THOR-50M
 - Lumbar set "erect"
 - THOR spine more flexible to position compared to H3
 - Achieved contact with HR
 - H3
 - H3 neck angle cannot be adjusted if neck load cell installed
 - Stiff spine
 - Head would NOT contact HR
 - Results in increased head impact forces

	Occupant	25° Recline	45° Recline
	occupant	Odyssey	Seat Tests
Ч	THOR-50M	3	3
56 kph			
ũ			

Methods: Tests discussed today


- THOR-50M
- Odyssey seats
- 25° (3 tests) and 45° (3 tests) recline angles
- <u>56 kph</u>

Methods: THOR vs. PMHS Instrumentation

	THOR-50M	PMHS
Head		
Chest		
C2/4/6	load cell	
T1	•	•
T4	N/A	٠
T6	•	N/A
T8	N/A	•
T12		
Pelvis	load cell 🔵	
Femur	load cell	•
Tibia	load cell	•

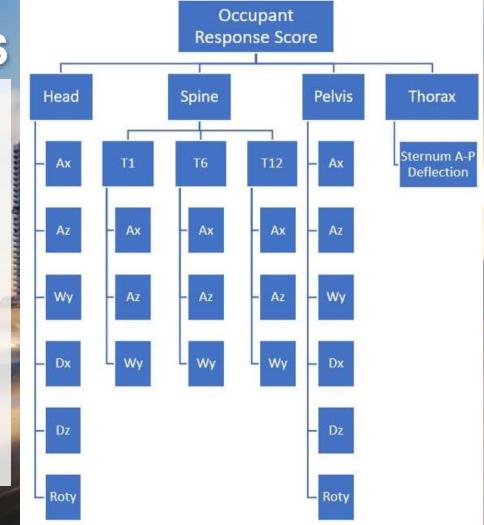
Methods: Data Processing BRS

 Biofidelity Ranking System (BRS) scores were calculated using updated version of BRS (soon to be published) that builds/improves off of Rhule et al. 2018

Rhule, H., Stricklin, J., Moorhouse, K., Donnelly, B. 2018. Improvements to NHTSA's Biofidelity Ranking System and Application to the Evaluation of the THOR 5th Female Dummy, IRCOBI Conference, Athens, Greece.

Updated BRS approach:

- 1) Align phase between ATD and PMHS
- 2) Calculate BRS score
- Report Dummy Phase Shift (along with mean/max PMHS Phase Shift determined when building Biofidelity Corridors)
- Lower Biorank = better biofidelity
 - BRS Score represents multiples of standard deviations from mean PMHS response

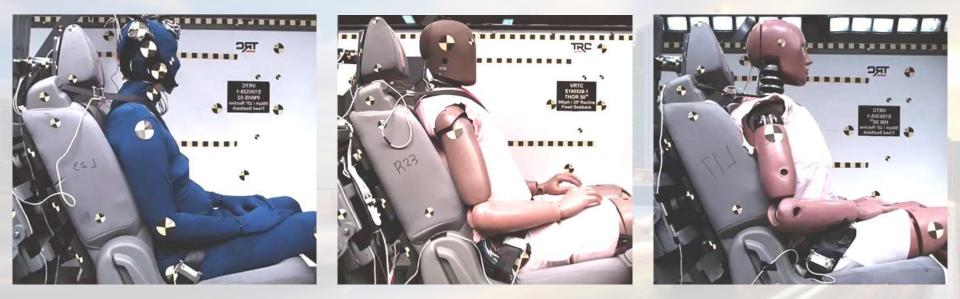


Methods: Occupant BRS

- Occupant scores calculated from
 - Head
 - Spine
 - Pelvis

NHTSA

- Thorax
- TOTAL occupant response score calculated from average of individual scores


Methods: Seat Loading BRS

- Seat scores calculated from
 - Head restraint
 - Seatback top
 - Seatback middle
 - Seatback bottom
 - Belt tensions
- TOTAL seat loading score calculated from average of individual scores

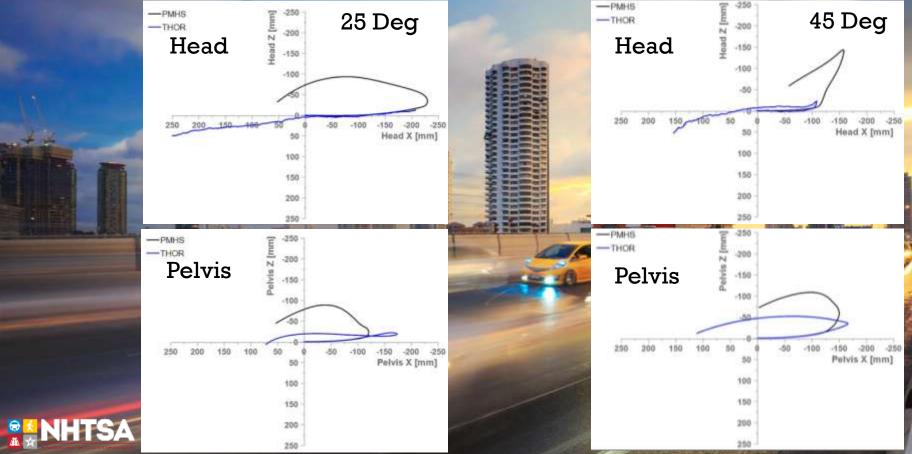
Results: High Speed Videos 25° Recline

PMHS

THOR-50M

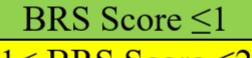
Hybrid III 50th

Results: High Speed Videos 45° Recline


PMHS

THOR-50M

Hybrid III 50th


Results: Trajectories

24

Results: BRS Scores

 Any B value over 2 indicates that the THOR response varies from the mean PMHS by more that 2 SD, on average

Results: Occupant		BRS Score ≤1 1< BRS Score ≤2 BRS Score >2				
 Occupant scores calculated from Head 	Location	25° R <i>BRS</i>	ecline DPS (ms)		45° R BRS	ecline DPS (ms)
 Spine Pelvis 	Head	2.31	2		2.08	2
– Thorax	Spine	1.33	3		1.33	2
TOTAL occupant response	Thorax	1.89	2		1.37	0
score calculated from the AVERAGE of individual scores	Pelvis	2.48	2		1.53	3
	AVG OCCUPANT RESPONSE	2.00	2		1.58	2

Results: Seat Loadi	ng BRS		1< BF	Score ≤1 Score ≤ Score >2	2
Seat Loading scores calculated from – HR Plate	Location	25° I BRS	Recline DPS (ms)		ecline DPS (ms)
 Top Plate Middle Plate Bottom Plate 	HR Plate	1.56	3	1.98	1
	Seat Top Plate	1.94	1	1.71	2
 Belt Tensions 	Seat Middle Plate	1.28	2	3.17	3
TOTAL seat loading	Seat Bottom Plate	2.53	0	2.70	1
response score calculated from the AVERAGE of individual scores	Belt Tensions	1.76	48	2.40	6
	AVG SEAT LOADING RESPONSE	1.81	11	2.39	3

•

NHTSA

Measurement	25° Recline (n=3)			45° Recline (n=3)		
measurement	THOR	PMHS		THOR	PMHS	
HIC15	3,444 (83% IR)	no skull fx		923 (20% IR)	no skull fx	
Upper Neck FX	-900 N			-916 N		
Upper Neck FZ	2,076 N	cervical spine laxity		2,035 N	cervical spine laxity	
Upper Neck MY	40.8 Nm			-31.0 Nm		
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx		49.0 mm (45% IR)	avg. 12 rib fx	
Acetabulum Resultant	7,102 N (100% IR)	none		8,424 N (100% IR)	2 of 3 pelvis fx	
Lower Tibia FX	er Tibia FX -2,268 N			-1,036 N		
Upper Tibia FZ	1,055 N (1% IR)	none		1,423 N (1% IR)	one fibula fx	
Lower Tibia FZ	2,254 N (6% IR)			3,046 N (6% IR)		

Craig M, Parent D, Lee E, Rudd R, Takhounts E, Vikas H (2020) "Injury Criteria for the THOR 50th Male ATD", docket# NHTSA-2019-0106-0008 September 2020.

Measurement	25° Recline (n=3)			45° Recline (n=3)		
measurement	THOR	PMHS		THOR	PMHS	
HIC15	3,444 (83% IR)	no skull fx		923 (20% IR)	no skull fx	
Upper Neck FX	-900 N	cervical spine laxity				
Upper Neck FZ	2,076 N			2,035 N		
Upper Neck MY	40.8 Nm					
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx		49.0 mm (45% IR)	avg. 12 rib fx	
Acetabulum Resultant	7,102 N (100% IR)				2 of 3 pelvis fx	
Lower Tibia FX	-2,268 N	none		-1,036 N		
Upper Tibia FZ	1,055 N (1% IR)			none		one fibula fx
Lower Tibia FZ	Tibia FZ 2,254 N (6% IR)			3,046 N (6% IR)		

Measurement	25° Recline (n=3)			45° Recline (n=3)		
measurement	THOR	PMHS		THOR	PMHS	
HIC15	3,444 (83% IR)	no skull fx		923 (20% IR)	no skull fx	
Upper Neck FX	-900 N			-916 N		
Upper Neck FZ	2,076 N	cervical spine laxity		2,035 N	cervical spine laxity	
Upper Neck MY	40.8 Nm			-31.0 Nm	y	
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx		49.0 mm (45% IR)	avg. 12 rib fx	
Acetabulum Resultant	7,102 N (100% IR)					
Lower Tibia FX	-2,268 N	none		-1,036 N		
Upper Tibia FZ	1,055 N (1% IR)				one fibula fx	
Lower Tibia FZ	2,254 N (6% IR)			3,046 N (6% IR)		

Measurement	25° Recline (n=3)			45° Recline (n=3)		
	THOR	PMHS		THOR	PMHS	
HIC15	3,444 (83% IR)	no skull fx		923 (20% IR)	no skull fx	
Upper Neck FX	-900 N				cervical spine laxity	
Upper Neck FZ	2,076 N			2,035 N		
Upper Neck MY				-31.0 Nm		
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx		49.0 mm (45% IR)	avg. 12 rib fx	
Acetabulum Resultant	7,102 N (100% IR)					
Lower Tibia FX	-2,268 N	none		-1,036 N		
Upper Tibia FZ	1,055 N (1% IR)				one fibula fx	
Lower Tibia FZ	2,254 N (6% IR)			3,046 N (6% IR)		

Measurement	25° Recline (n=3)		45° Recline (n=3)		
	THOR	PMHS	THOR	PMHS	
HIC15	3,444 (83% IR)	no skull fx	923 (20% IR)	no skull fx	
Upper Neck FX	-900 N				
Upper Neck FZ	2,076 N		2,035 N	cervical spine laxity	
Upper Neck MY	40.8 Nm				
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx	49.0 mm (45% IR)	avg. 12 rib fx	
Acetabulum Resultant	7,102 N (100% IR)	none	8,424 N (100% IR)	2 of 3 pelvis fx	
Lower Tibia FX	-2,268 N	none	-1,036 N		
Upper Tibia FZ	1,055 N (1% IR)			one fibula fx	
Lower Tibia FZ	2,254 N (6% IR)		3,046 N (6% IR)		

Measurement	25° Recline (n=3)			45° Recline (n=3)	
	Mean	Std. Dev.		THOR	PMHS
HIC15	3,444 (83% IR)	no skull fx		923 (20% IR)	no skull fx
Upper Neck FX	-900 N				cervical spine laxity
Upper Neck FZ	2,076 N			2,035 N	
Upper Neck MY	40.8 Nm				
Chest Res Defl (internal)	62.7 mm (71% IR)	avg. 6 rib fx		49.0 mm (45% IR)	avg. 12 rib fx
Acetabulum Resultant		none		8,424 N (100% IR)	
Lower Tibia FX	-2,268 N	none		-1,036 N	
Upper Tibia FZ	1,055 N (1% IR)			1,423 N (1% IR)	one fibula fx
Lower Tibia FZ	2,254 N (6% IR)			3,046 N (6% IR)	

Conclusions - Biofidelity

- BRS 25° recline:
 - Good overall biofidelity (BRS score < 2) in occupant responses and seat loading
 - Better seat loading biofidelity than 45° recline
 - Seatback bottom, head, and pelvis all had BRS score > 2
 - BRS 45° recline
 - Good overall biofidelity (BRS score < 2) in occupant response but not seat loading
 - Seatback middle, bottom, belt tensions BRS score > 2
 - Better occupant response biofidelity than 25° recline

Conclusions – THOR vs. PMHS Differences

- THOR vs. PMHS differences:
 - THOR spine does not stretch like PMHS
 - Pelvis rotation differences due to spine stretch in PMHS affects ramping and lower body kinematics
 - THOR head rotated forward when interacting with HR but PMHS rotated rearwards
 - More PMHS ramping allowed more neck extension over the head restraint
 - Neck differences led to differences in head behavior
 - THOR and PMHS pelvis interact differently with seatback and belt
 - Large differences in PMHS ramping/kinematics compared to THOR

Conclusions – Injury Assessment

- THOR injury measurements (from frontal IC) compared to PMHS:
 - THOR acetabulum forces exceeded 50% risk injury, so good correlation with PMHS
 - Tibia forces were well below the 50% risk values, correlates with PMHS lower leg (one fibula fracture but no tibia fracture) injuries
 - High HIC values for THOR but no PMHS skull fractures
 - HIC may not be an appropriate predictor of skull fracture in this loading case
 - Internal deflection showed more deformation in the 25° than the 45° recline, even though more rib fractures at 45° recline
 - Possible differences in thoracic injury mechanisms with respect to seatback recline and expansion of chest due to abdomen shifting upwards in PMHS
 - Modify THOR chest instrumentation to identify chest injuries
 - Develop new injury criteria for rear-facing once ATD biofidelity is maximized

Adjust cable routing to avoid damage during test

- Adjust cable routing to avoid damage during test
- Neck modifications to aid head kinematics

- Adjust cable routing to avoid damage during test
- Neck modifications to aid head kinematics
- Chest instrumentation to better identify chest injuries

- Adjust cable routing to avoid damage during test
- Neck modifications to aid head kinematics
- Chest instrumentation to better identify chest injuries
- Lack of abdomen instrumentation IR-TRACCs had to be removed to prevent damage

- Adjust cable routing to avoid damage during test
- Neck modifications to aid head kinematics
- Chest instrumentation to better identify chest injuries
- Lack of abdomen instrumentation IR-TRACCs had to be removed to prevent damage
- Increased flexibility in spine/lumbar region for better recline positioning and simulation of spine stretch

- Adjust cable routing to avoid damage during test
- Neck modifications to aid head kinematics
- Chest instrumentation to better identify chest injuries
- Lack of abdomen instrumentation IR-TRACCs had to be removed to prevent damage
- Increased flexibility in spine/lumbar region for better recline positioning
- Pelvis/abdomen redesign for reclined posture

Ongoing & Future Work

- BRS score calculations for other test setups
- Additional PMHS/ATD testing
 - THOR-AV (HIS), THOR with reclined mods (UVA/Cellbond)
 - Accord seat
 - Low-speed tests (24 kph) to encompass range of possible future crash severities
 - Seat belts with pretensioners
- Identify & implement necessary design modifications for THOR
- Data for tests presented today is entered into NHTSA Biomechanics Database (<u>https://www-nrd.nhtsa.dot.gov/database/VSR/bio/QueryTest.aspx</u>)
 Test numbers 13077 - 13098

Thank you

• QUESTIONS?

